pydantic
Pydantic⚑
(https://pydantic-docs.helpmanual.io/): data validation and settings management using python type annotations.
Enforces type hints at runtime, and provides user friendly errors when data is invalid.
Usage⚑
The most basic example is:
from datetime import datetime
from typing import List, Optional
from pydantic import BaseModel
class User(BaseModel):
id: int
name = 'John Doe'
signup_ts: Optional = None
friends: List =
external_data = {
'id': '123',
'signup_ts': '2019-06-01 12:22',
'friends': ,
}
user = User(**external_data)
print(user.id)
##> 123
print(repr(user.signup_ts))
##> datetime.datetime(2019, 6, 1, 12, 22)
print(user.friends)
##>
print(user.dict())
"""
{
'id': 123,
'signup_ts': datetime.datetime(2019, 6, 1, 12, 22),
'friends': ,
'name': 'John Doe',
}
"""
What's going on here:
id
is of typeint
; the annotation-only declaration tellspydantic
that this field is required. Strings, bytes or floats will be coerced to ints if possible; otherwise an exception will be raised.name
is inferred as a string from the provided default; because it has a default, it is not required.signup_ts
is adatetime
field which is not required (and takes the valueNonei
if it's not supplied).pydantic
will process either a unix timestamp int (e.g. 1496498400) or a string representing the date & time.friends
uses python's typing system, and requires a list of integers. As withid
, integer-like objects will be converted to integers.
If validation fails pydantic
will raise an error with a breakdown of what was wrong.
Validators⚑
Custom validation and complex relationships between objects can be achieved using the validator
decorator.
Example:
from pydantic import BaseModel, validator
class UserModel(BaseModel):
name: str
username: str
password1: str
password2: str
@validator('name')
def name_must_contain_space(cls, v):
if ' ' not in v:
raise ValueError('must contain a space')
return v.title()
The validation function will get the variable name
value and can perform checks or transformations to it. It should finally return the desired value for the variable.
You can use validators to set the value of an attribute as a combination of others if undefined:
from typing import Optional
from pydantic import BaseModel, validator
class UserModel(BaseModel):
name: str
password1: str
password2: str
username: Optional = None
accepted_tos: bool = False
@validator('username', pre=True, always=True)
def default_username(cls, v, values):
if v is None:
v = values
return v
always=True
is required in this example since otherwise when username
is not passed, the validator won't be executed. pre=True
makes it run before any other validator so that username
is defined in before other possible validations.
Note that values
only contains the class attributes defined before the one that is being validated. In the example above, values
in the default_username
validator won't contain the accepted_tos
key.
Root validators⚑
Validation can also be performed on the entire model's data.
You can decorate a function with @root_validator
and it will get all of the values as an argument. This function should process them and raise an exception or return the desired values dictionary.
For example:
@root_validator
def check_passwords_match(cls, values):
pw1, pw2 = values.get('password1'), values.get('password2')
if pw1 is not None and pw2 is not None and pw1 != pw2:
raise ValueError('passwords do not match')
return values
root_validator
takes pre
as argument but not always
, since its executed always anyways.
Note: there is a bug ((https://github.com/samuelcolvin/pydantic/issues/1895)) that prevents subclasses to override the root_validator
method defined in the parent class. A workaround for BaseModel
subclasses is described in the issue comments but not for pydantic dataclasses. In this second case, a solution is to not define the root validator in the parent class and do it only on the child.
Exporting⚑
Options:
model.json(exclude_none=True)
model.dict(exclude_none=True)
model.dict(by_alias=True)
Use theField(alias=...)
value instead of the Python attribute name in the resulting dict.
Types⚑
pydantic.HttpUrl
pydantic.color.Color